Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

A. V. Trask,^a* M. Abthorpe^b and W. Jones^a

^aPfizer Institute for Pharmaceutical Materials Science, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England, and ^bDepartment of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England

Correspondence e-mail: avt21@cam.ac.uk

Key indicators

Single-crystal X-ray study T = 180 K Mean σ (C–C) = 0.002 Å R factor = 0.041 wR factor = 0.102 Data-to-parameter ratio = 15.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4-Methyl-3,5-dinitrobenzoic acid-dimethyl sulfoxide (1/1)

The title complex, $C_8H_6N_2O_6\cdot C_2H_6OS$, was predicted to illustrate an intermolecular hydrogen-bond motif between the carboxylic acid and the sulfoxide funtionalities, based upon a previously published structure of an analogous complex. The predicted hydrogen-bond motif was observed, thereby indicating a certain robustness of this intermolecular interaction for crystal engineering purposes.

Received 15 March 2005 Accepted 18 March 2005 Online 25 March 2005

Comment

The asymmetric unit of the title crystal structure, (I), consists of one molecule each of 4-methyl-3,5-dinitrobenzoic acid and dimethyl sulfoxide (DMSO) (Fig. 1).

The crystallization was performed to evaluate the robustness of an intermolecular hydrogen bond involving an O– $H \cdots O$ S contact between a carboxylic acid and a sulfoxide. This interaction was recently observed in the crystal structure of an analogous complex involving 3,5-dinitrobenzoic acid and DMSO (Abthorpe *et al.*, 2005). This interaction also is found in 29 of a possible 37 instances in the Cambridge Structural Database (CSD Version 5.25 Update 3; Allen, 2002), when searching for structures which contain both a carboxyl group and a DMSO molecule among all organic structures for which three-dimensional coordinates have been determined. The hydrogen-bond interaction in the crystal structure is presented in Fig. 2.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved The asymmetric unit (XP; Sheldrick, 1993) of (I), showing displacement ellipsoids at the 50% probability level.

Figure 2

Part of the crystal packing (*DIAMOND*; Brandenburg, 1999), showing intermolecular hydrogen-bond interactions as dashed lines.

Figure 3

The crystal packing (*DIAMOND*; Brandenburg, 1999), viewed along [100], showing sheets stacking along [010].

Figure 4

The crystal packing (*DIAMOND*; Brandenburg, 1999), viewed along [001], showing sheets stacking along [010].

The title complex packs in a monoclinic unit cell in the space group $P2_1/c$. Crystal packing results in alternating sheets of acid and DMSO molecules stacking along [010]. (Figs. 3 and 4).

The experiment reported here represents a successful demonstration of the methodological approach of crystal engineering: observation of a particular heteromolecular hydrogen-bonding interaction, evaluation of the abundance of the interaction in the CSD, and application of this information to the design of a novel crystalline molecular complex. The demonstrated robustness of this hydrogen-bond motif indicates a potential utility for future crystal engineering experiment design.

Experimental

All starting components were obtained from Sigma Aldrich Ltd. 4-Methyl-3,5-dinitrobenzoic acid (64 mg) was dissolved in excess DMSO with gentle heating. The resulting solution was allowed to cool and evaporate slowly over a period of one week. From the solids that precipitated, a single crystal was harvested for subsequent XRD analysis.

Crystal data

 $C_8H_6N_2O_6 \cdot C_2H_6OS$ $M_r = 304.28$ Monoclinic, $P2_1/c$ a = 6.9483 (2) Å b = 22.4844 (5) Å c = 8.2364 (2) Å $\beta = 92.765$ (1)° V = 1285.26 (6) Å³ Z = 4

Data collection

Nonius KappaCCD diffractometer Thin-slice ω and φ scans Absorption correction: multi-scan (SORTAV; Blessing, 1995) $T_{\min} = 0.901, T_{\max} = 0.976$ 9790 measured reflections

2930 independent reflections

Refinement

refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.102$ S = 1.062930 reflections 187 parameters H atoms treated by a mixture of independent and constrained $D_x = 1.572 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 7863 reflections $\theta = 1.0-27.5^{\circ}$ $\mu = 0.29 \text{ mm}^{-1}$ T = 180 (2) KPlate, colourless $0.35 \times 0.32 \times 0.10 \text{ mm}$

2263 reflections with $l > 2\sigma(l)$ $R_{int} = 0.043$ $\theta_{max} = 27.5^{\circ}$ $h = -9 \rightarrow 9$ $k = -29 \rightarrow 29$ $l = -7 \rightarrow 10$

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0398P)^2 \\ &+ 0.6419P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} = 0.24 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.33 \ {\rm e} \ {\rm \AA}^{-3} \end{split}$$

All H atoms bonded to carbon were positioned geometrically and refined using a riding model, with $U_{iso} = 1.5U_{eq}$ for methyl H atoms and $U_{iso}(H) = 1.2U_{eq}$ (carrier atom) for all other H atoms. The C-H distances of the methyl groups were fixed at 0.98 Å; all other C-H distances were fixed at 0.95 Å. The O-H H atom was located in a difference Fourier map and refined isotropically.

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *HKL SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *HKL DENZO* (Otwinowski & Minor, 1997) and *SCALEPACK*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *XP* (Sheldrick, 1993) and *DIAMOND* (Brandenburg, 1999)(software used to prepare material for publication: *SHELXL97*.

We are grateful for funding from the Pfizer Institute for Pharmaceutical Materials Science (AVT and WJ). We thank Dr J. E. Davies for the data collection and structure determination.

References

- Abthorpe, M., Trask, A. V. & Jones, W. (2005) *Acta Cryst.* E**61**, 0609–0611. Allen, F. H. (2002). *Acta Cryst.* B**58**, 380–388.
- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.

Brandenburg, K. (1999). DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn, Germany.

- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press. Sheldrick, G. M. (1993). XP. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.